AI・機械学習・ディープラーニング

AIの俯瞰2

投稿日:2018年3月18日 更新日:

人工知能研究にあった大きな壁

  1. 機械学習に使う情報量の不足
  2. コンピューター性能の不足

機械学習に使う情報量の不足

インターネットの登場→ビッグデータ

検索技術=マイニングにより、ビッグデータからひつよ

機械学習とビッグデータ

機械学習はデータが命。機械学習の中心はデータである。

-AI・機械学習・ディープラーニング

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

ニューラルネットワーク

パーセプトロンのyに対して、活性化関数を掛けたもの。 活性化関数 シグモイド関数 ステップ関数 ReLU(Rectified Jiner Unit) 両者は非線形関数である。ニューラルネットワークでは …

no image

DeepMindの記事見て触発された

http://gigazine.net/news/20141203-deepmind-demis-hassabis/ Googleに買収されて有名になっていたDeepMindの創業者の記事を読んだ。 …

no image

Windows7で「ゼロから作るDeep Learning」を実装していく

IDE Pycharmがお勧め。 PycharmのFile>Default Settings>Project Interpreterで、 右上の緑の「+」ボタンから、「numpy」と「matplotl …

no image

いちばんやさしい機械学習プロジェクトの教本

この本はAIプロジェクトのプロマネ、コンサルは必携の本。 エンジニアもAI案件に携わるなら、全工程を見通すために役に立ちます。 各工程でのポイントがよくまとめられているため、具体的な AIで起業する場 …

no image

エンジニアの勉強のポイント

今から勉強するなら、最先端分野がいいです。 AIがいいです。 今Springやアジャイルを学んでも、給料は上がりません。 10年前なら違ったかもしれません。 SIが今やってる、客先に常駐して顧客の業務 …