AI・機械学習・ディープラーニング

AIの俯瞰2

投稿日:2018年3月18日 更新日:

人工知能研究にあった大きな壁

  1. 機械学習に使う情報量の不足
  2. コンピューター性能の不足

機械学習に使う情報量の不足

インターネットの登場→ビッグデータ

検索技術=マイニングにより、ビッグデータからひつよ

機械学習とビッグデータ

機械学習はデータが命。機械学習の中心はデータである。

-AI・機械学習・ディープラーニング

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

何を学習するか?考えると、データがないと始まらない。

さて、Amazon Machine Learningを使ってみた。もっと他にも試してみたいなと思った。 そこで思った。 まず「大量データ」を準備するのが大変だ。 「データ」を使って何を予測すればよいか …

no image

ディープラーニングの分かりやすい記事まとめ

入門・解説記事 深層学習を勉強して説明してみた https://research.preferred.jp/2012/11/deep-learning/ 業界を代表するブログ https://rese …

no image

AIの俯瞰

AI=Artifical Inteligence=人口知能 AIの適用領域 画像認識 Visual Recognition ImageNet というコンテストがある。何の画像かAIが見極める競技である …

no image

AIはデータ分析の手法の1つ

に過ぎない。 AIと切っても切れない。AIが成立する大前提になってるのが、ビッグデータです。 ビッグデータを成立させているのが、大規模分散処理による高速化です。 今まで何十時間もかかっていたことが、数 …

no image

エンジニアの勉強のポイント

今から勉強するなら、最先端分野がいいです。 AIがいいです。 今Springやアジャイルを学んでも、給料は上がりません。 10年前なら違ったかもしれません。 SIが今やってる、客先に常駐して顧客の業務 …