AI・機械学習・ディープラーニング

ディープラーニングのフレームワーク

投稿日:

名前 ユースケース メリット
TensorFlow google MNIST(手書き数字を判別)、CNN(画像認識)、Word2Vec(各単語の関係を学習)、RNN(文章から次の単語予測)、Seq2Seq Model(フランス語を英語に翻訳) CPU/GPU意識しない
CNTK Microsoft 高速
Chainer 国産
Caffe yahoo 画像分類
Amazon Machine Learning 構造化データをS3,RDS,Redshiftに入れて、二値分類、クラス分類、回帰予測ができる GUIで簡単

Tensorflowが公開されたときのコメントとして、機械学習のフレームワークやアルゴリズムよりも、「持っているデータ」が価値があるとのこと。

ある程度まで機械学習を使えるようになったら、「どんなデータを、どうやって集めるか」に注力した方がよさそう。

-AI・機械学習・ディープラーニング

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

ニューラルネットワーク

パーセプトロンのyに対して、活性化関数を掛けたもの。 活性化関数 シグモイド関数 ステップ関数 ReLU(Rectified Jiner Unit) 両者は非線形関数である。ニューラルネットワークでは …

no image

ディープラーニングの分かりやすい記事まとめ

入門・解説記事 深層学習を勉強して説明してみた https://research.preferred.jp/2012/11/deep-learning/ 業界を代表するブログ https://rese …

no image

誤差逆伝播法が必要な理由

ディープラーニングの勉強してると、誤差逆伝播法が必ず出てくるんだけど、イマイチなぜ?それが必要なのか分からなかった。 理由 ニューラルネットの層が深くなると、勾配の計算に時間がかかる。 誤差逆伝播法だ …

no image

線形関数を活性化関数に用いてはいけない理由

線形関数とは y=ax(aは定数)のこと。 線形関数で層を重ねると 1層目 y=ax 2層目 y=a(ax)=a2x 3層目 y=a(a(ax)=a3x ・・・ n層目 y=anx このようになってし …

no image

numpy 配列の乗算

import numpy as np x = np.array([0,1]) w = np.array([0,5],[0.5]) print x*w >>>[0. 0.5] このよう …